- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000000020000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Le, T T (2)
-
Nguyen, L H (2)
-
Dang, T D (1)
-
Nguyen, P M (1)
-
Van, C B (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper addresses the challenging and interesting inverse problem of reconstructing the spatially varying dielectric constant of a medium from phaseless backscattering measurements generated by single-point illumination. The underlying mathematical model is governed by the three-dimensional Helmholtz equation, and the available data consist solely of the magnitude of the scattered wave field. To address the nonlinearity and servere ill-posedness of this phaseless inverse scattering problem, we introduce a robust, globally convergent numerical framework combining several key regularization strategies. Our method first employs a phase retrieval step based on the Wentzel--Kramers--Brillouin (WKB) ansatz, where the lost phase information is reconstructed by solving a nonlinear optimization problem. Subsequently, we implement a Fourier-based dimension reduction technique, transforming the original problem into a more stable system of elliptic equations with Cauchy boundary conditions. To solve this resulting system reliably, we apply the Carleman convexification approach, constructing a strictly convex weighted cost functional whose global minimizer provides an accurate approximation of the true solution. Numerical simulations using synthetic data with high noise levels demonstrate the effectiveness and robustness of the proposed method, confirming its capability to accurately recover both the geometric location and contrast of hidden scatterers.more » « lessFree, publicly-accessible full text available June 26, 2026
-
Le, T T; Van, C B; Dang, T D; Nguyen, L H (, preprint arXiv:2506.20777)We study an inverse problem for the time-dependent Maxwell system in an inhomogeneous and anisotropic medium. The objective is to recover the initial electric field $$\mathbf{E}_0$$ in a bounded domain $$\Omega \subset \mathbb{R}^3$$, using boundary measurements of the electric field and its normal derivative over a finite time interval. Informed by practical constraints, we adopt an under-determined formulation of Maxwell's equations that avoids the need for initial magnetic field data and charge density information. To address this inverse problem, we develop a time-dimension reduction approach by projecting the electric field onto a finite-dimensional Legendre polynomial-exponential basis in time. This reformulates the original space-time problem into a sequence of spatial systems for the projection coefficients. The reconstruction is carried out using the quasi-reversibility method within a minimum-norm framework, which accommodates the inherent non-uniqueness of the under-determined setting. We prove a convergence theorem that ensures the quasi-reversibility solution approximates the true solution as the noise and regularization parameters vanish. Numerical experiments in a fully three-dimensional setting validate the method's performance. The reconstructed initial electric field remains accurate even with $$10\%$$ noise in the data, demonstrating the robustness and applicability of the proposed approach to realistic inverse electromagnetic problems.more » « lessFree, publicly-accessible full text available June 25, 2026
An official website of the United States government
